The Ancient Collision That Everyone Saw

The year is 1987, and on February 23rd, three separate neutrino observatories experienced a huge burst in detections. Although initially unsure of their origin, the next day a Supernova was discovered in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way visible in the southern hemisphere.  Known as 1987A, it was the closest supernova observed in centuries, and was observed by astronomers around the world as it brightened and then slowly dimmed.  By combining the visible observations with the neutrino data, scientists learned about how supernovae occur, constrained the mass of the neutrino, and opened a new...

The Gravity Wave Era

I saw an article last night about gravitational waves, that a black hole merger was detected by not just the Laser Interferometer Gravitational Wave Observatory (LIGO), but by another project altogether, the Virgo collaboration.  This is the first gravitational wave detection confirmed by two separate groups, and it marks the beginning of a new era of experimental science, the first in astronomy in over two decades. Around 1.8 Billion years ago, to black holes merged in a faroff galaxy.  They had masses of 31 and 25 times that of the Sun, though with their incredible density they would each be...

A faraway Cosmic ray

Cosmic rays are incredibly powerful invisible particles, and we can’t be sure where they come from. Not much in the way of a comforting thought, but it makes for a cosmic mystery that astronomers have been trying to solve for decades.  And now they have come one step closer. Here’s what we do know.  Cosmic rays are energetic atomic nuclei travelling at near the speed of light.  They hit our atmosphere and rapidly interact with the molecules there to break into billions of smaller, less energetic particles that shower down on the life on Earth, without giving us much notice...

Sample Size Solves Problems

Science and technology benefit one another.  New scientific theories afford new opportunities to create technology that can harness the laws of nature.  Conversely, new technologies allow for better instrumentation and unprecedented efficiency in scientific progress.  It’s a continual feedback loop, and some of the greatest challenges in science are solved simply by throwing more resources at them, or in other words, gathering more data. A good example of this is a relatively old problem for astronomers – determining how the spin of a galaxy affects it’s shape.  We certainly don’t want for analogies on Earth, spinning pizza, driving on a...

Einstein’s Final Riddle

Why does the Universe expand the way it does? Why does it accelerate? Einstein’s equations offer an explanation of gravity that works on the scale we know, but do they work on the grandest scales of space and time? Humanity now has a way to find out. The General Theory of Relativity predicts the behaviour of gravity, and includes a term known as the cosmological constant.  Einstein added this term to make the universe static and unchanging, as he believed it was.  But when the expansion of the universe was discovered by Edwin Hubble, Einstein regarded it as ‘the greatest blunder...

Measuring Dark Energy Like a BOSS

When you start to think about the most massive and extreme ‘stuff’ in the universe, you inevitably go to Dark Matter and Dark Energy.  They exist as opposites, one with incredible gravity holding the universe together, and the other a mysterious vacuum energy tearing it apart.  Studying this cosmic tug of war gives astronomers a chance to determine the past and future of the entire universe. To study the immense scale of these two quantities, the Baryon Oscillation Spectroscopic Survey (BOSS) program of the Sloan Digital Sky Survey-III (SDSS) constructed a 3D map of the sky, amounting to a volume...

A Direct Black Hole

How did supermassive black holes form in the early epochs of the universe? More importantly, how did they have enough time to grow as large as they did? The answer requires a very different universe.  And back then, conditions were much different than they are now.  There was a lot of gas, little dust, no stars, and a plethora of dark matter. Astronomers have spent decades observing early quasars, massive active galaxies powered by huge black holes feeding on surrounding gas.  But these galaxies are seen so early in the universe’s history, one starts to wonder how a black hole finds sufficient...

Seeding The Supermassive

In the early Universe, things were quite different.  The first stars were much more massive than stars today, and contained mostly Hydrogen.  Astronomers have good ideas about how they formed, but other objects from around this time, namely black holes, are much tougher to account for.  Early black holes were huge, with no explanation for how they grew so large.  “Early” means “first Billion years after the Big Bang,” but even in that time, it’s hard to determine how observed black holes could grow as large as 100,000 solar masses. I say 100,000 solar masses, because that is the mass of two ‘seed’ black holes, discovered...

Black Holes ARE Dark Matter?

Dark matter could be almost anything.  With little data other than how much total dark matter mass exists, we can’t decode much about what individual chunks of dark matter might be made of.  I’ve talked before about Massive Compact Halo Objects (MACHOs) and Weakly Interacting Massive Particles (WIMPs), but these are just two possibilities.  Other theorists have talked about Modified Newtonian Gravity (MNG), where gravity may work differently on the grand scale than it does on our small Earth scales.  Or perhaps it’s something I haven’t seen before.  Maybe what we call dark matter is just a large population of ancient black holes....

Heavy Metal

Where do the heavy elements on the periodic table come from?  The general answer is from what’s called the r-process of stellar nucleosynthesis.   This translates to ‘rapid neutron capture’ being the method by which most of the elements heavier than Iron are formed on the periodic table.  This process requires immense energy and was originally thought to only occur within core-collapse supernova explosions. “Understanding how heavy, r-process elements are formed is one of hardest problems in nuclear physics,” said Anna Frebel, assistant professor in the Department of Physics at the Massachusetts Institute of Technology (MIT) and also a member of...