The closest star to the Earth, aside from the Sun, is Proxima Centauri, a small red dwarf star that is part of the Alpha Centauri system, roughly 4 light years away. If you don’t know light years, the distance is a staggering 37,800,000,000,000 Km. Beyond that our stellar neighbourhood fills in as you move 20 light years in any direction, and by 100 light years, there are dozens of stars around us. This gives a stellar density of about 0.14 stars per cubic parsec (a parsec is about 3.26 light years), pretty normal in terms of the number of stars in a given...
I’ve written many times about the power of looking at different wavelengths of light to study different properties of the universe. From a visualization standpoint, there are other techniques that give you additional power when imaging. More than just the wavelength of light you’re using to show the detail, you can choose the range of wavelengths to bring forward certain features while suppressing others. The aptly-named spaghetti nebula, shown above, is a great example of this. A supernova remnant that covers the constellations Taurus and Auriga, the nebula is very large in the sky, covering three full moons worth (love that unit...
When could the Moon possibly be brighter than the Sun? The Sun is much bigger, produces energy, and gives all the energy needed for life on Earth. But if you look at the sky in gamma rays, the highest energy photons on the electromagnetic spectrum, you’ll see the Moon more easily than the Sun. Why? The Moon is the brightest gamma ray source in the sky, because it has no atmosphere or magnetic field. Essentially it has no protection from the dangerous cosmic rays that are constantly zipping through space. When they hit the Earth’s atmosphere they create a cosmic...
Hubble just discovered the newest moon in the solar system, a tiny rock orbiting the dwarf planet Makemake, far beyond the orbit of Neptune. The new moon is about 250 Km across, compared to the 1,400 Km wide Makemake. It orbits in approximately 12 days, and has an edge on orbit, making it difficult to spot. “Our preliminary estimates show that the moon’s orbit seems to be edge-on, and that means that often when you look at the system you are going to miss the moon because it gets lost in the bright glare of Makemake,” said Alex Parker of...
Even after a decade of interloping among the Saturnian system, the Cassini spacecraft is still doing great science. It helps that there are lots of places to visit, since Saturn has 62 moons and the largest ring system of the gas giants. Arguably the best science has come from Saturn’s largest moon Titan, second largest moon in the solar system (behind Ganymede) and the only moon known to have an atmosphere. Since Cassini has been in orbit around Saturn and it’s system of moons, it’s been revealed that over 1.6 million square kilometers of Titan’s surface are covered in liquid...
Not to be confused with Canadian Gum Hubba-Bubba, Hubble has released a great birthday image for it’s 26th birthday. I’m a few days late to celebrate, but it’s still a beautiful image. Known as NGC 7653, the Bubble nebula is 8,000 light years distant in the constellation of Cassiopeia. The reason for this natural bubble shape is that the star just left of center in the image is ionizing a surrounding cloud of Hydrogen with it’s powerful stellar wind. As electrons and protons recombine at the edges of the bubble, they release an infrared photon that can be clearly seen...
A direct consequence of Einstein’s theory of general relativity, and an observational way to prove it, is gravitational lensing. It requires a powerful gravitational source to work, such as a galaxy or cluster of galaxies. It works in a similar way to a lens of glass, where rays of light are bent toward a single source, increasing the brightness. In this case, instead of glass, the bending of the rays is due to the curvature of space. Light rays coming from the source would otherwise miss Earth, but instead are bent toward us when there is a massive object in front of it. It’s...
One of the most fascinating things happens whenever I show someone the planet Mercury in the sky. Their first reaction is to be surprised at how bright it is. Most people think of Mercury as a faraway planet, too close to the Sun to see at all. But in reality, Mercury is close to Earth, and when the angles are just right, it’s not hard to find. Mercury is 57 million kilometers from the Sun, more than a third of the way to Earth. We are also much closer to Mercury than we are to Jupiter and Saturn. When we see the...
Have you ever seen the North star, Polaris? It’s decently bright and very close to the North celestial pole. Lining up with the rotation axis of the Earth, the North celestial pole is the point in the sky that never moves, day or night. If you know how to find Polaris, it becomes easy to find the cardinal directions and navigate by the stars. And finding it simply requires finding the big dipper, a bright and easily recognizable object. The same rules apply in the southern hemisphere. But even though there is no southern star, there is another fantastic object in the South that can guide you to the...
As I’ve said before, the most powerful, most energetic, most intense processes happen in the center. The gravitational center of the Earth, the Sun, and the galaxy are all places where temperature, pressure, and interactions of matter and energy are pushed to their limits. When you look up to the sky it’s easy to see the Milky Way (unless you live in an urban center). Do you ever wonder where the middle of it is? Where that supermassive black hole lies? Astronomers know where it is, but you need infrared cameras to see it past the thick dust that blocks...