When you start to think about the most massive and extreme ‘stuff’ in the universe, you inevitably go to Dark Matter and Dark Energy. They exist as opposites, one with incredible gravity holding the universe together, and the other a mysterious vacuum energy tearing it apart. Studying this cosmic tug of war gives astronomers a chance to determine the past and future of the entire universe. To study the immense scale of these two quantities, the Baryon Oscillation Spectroscopic Survey (BOSS) program of the Sloan Digital Sky Survey-III (SDSS) constructed a 3D map of the sky, amounting to a volume...
Dark matter could be almost anything. With little data other than how much total dark matter mass exists, we can’t decode much about what individual chunks of dark matter might be made of. I’ve talked before about Massive Compact Halo Objects (MACHOs) and Weakly Interacting Massive Particles (WIMPs), but these are just two possibilities. Other theorists have talked about Modified Newtonian Gravity (MNG), where gravity may work differently on the grand scale than it does on our small Earth scales. Or perhaps it’s something I haven’t seen before. Maybe what we call dark matter is just a large population of ancient black holes....
Black holes form when a massive star runs out of fuel. Gravity causes the core to collapse down to an object so dense that light itself can not escape. In the Milky Way galaxy, there are expected to be over 100 Million black holes, though of course we can’t see them. The one we can see is the supermassive black hole Sag A*, lying deep within the core of the galaxy. But how did Sag A* form? Was it from the merger of many smaller black holes? Or is there some other process forming the most enigmatic objects in the...
With the recent discovery of gravitational waves, we now have a target for probing the very early universe, close to the big bang. This is because gravitational waves can travel across the universe unimpeded, meaning those created after the big bang are still bouncing around today. It’s like the big bang was the ringing of a giant bell, and the ringing can still be heard. But all of our Easter eggs are not in one basket. There is another way to probe the very early universe, one we haven’t found yet, because it involves particles that are very tiny and...
Today, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) is expected to announce a monumental discovery that is 100 years in the making. Theorized by Einstein’s general relativity in 1915, gravitational waves are ripples in space-time, similar to sound waves, but much tinier. The search has been ongoing for decades, with no results. Until now. LIGO has the most sensitive gravitational wave detector ever conceived – in two interferometer facilities in Livingston, Louisiana and Hanford, Washington. They use a laser split along two axes to give an in-phase beam. If gravitational waves along one of the axes affect the beam, it...
The elements that make up our world and our selves, where do they come from? Sure there is plenty of Oxygen in the air, Silicon and Carbon are just lying around, and a bunch of other stuff can be found across our planet. but where did they come from originally? We know that most of the elements are synthesized within stars, but which ones aren’t? Which ones are made in a lab? The Big Bang gave rise to the first elements Hydrogen and Helium, which eventually clumped together to form the first stars and star producing the heavier stuff. Lithium,...
You may have heard about the leaked rumour about the discovery of gravitational waves from earlier this week. It was from Lawrence Krauss, who is an amazing science communicator and author, as well as a darn good astrophysicist. My earlier rumor about LIGO has been confirmed by independent sources. Stay tuned! Gravitational waves may have been discovered!! Exciting. — Lawrence M. Krauss (@LKrauss1) January 11, 2016 It’s safe to say that as a guy with an inside scoop on a lot of the latest science news, this is something to get excited about. The ‘LIGO’ he is referring to stands...
The Milky Way is a decently big Galaxy. At 100,000 light years across, it is a full size barred spiral galaxy and distinctly different from what we would call ‘dwarf galaxies.’ But there are much larger galaxies in the universe. Most reside near the centre of a massive galaxy cluster and are the result of Billions of years of mergers and collisions. But some appear large because of their incredibly powerful release of energy. A new Galaxy discovered in the early universe by a team of astronomers from the National Centre for Radio Astrophysics is an incredible 4 million light years...
Welcome to a new series of posts that will characterize 1000 amazing facts about the Universe. There is so much out there that we have yet to learn, and every day, astronomers across the globe are using their research to reveal the deepest secrets of the cosmos. This series will look at the strangest, coolest, most exciting facts that we have discovered in hundreds of years of modern science. Fact #1: The Universe is Far Larger than you Can Possibly Imagine Let’s start with the fastest speed ever travelled by a human being, about 11 Km/s (40,000 Km/h). This is incredibly fast...
The deeper we peer through the cosmos, the more we are looking into the distant past. Light from other galaxies takes millions of years to reach us, and so when that light has finally arrived at Earth, it is millions of years old, a snapshot in time of the distant galaxy. The furthest we can see is so far back in the history of the universe, that galaxies haven’t even formed yet. As we look at the large-scale structure of the Universe, we see it filled with a cosmic web of galaxy clusters, containing tens of thousands of galaxies each....