Last week, while looking at some of the best images from the Cassini spacecraft, I commented on the fact that the smooth rings of Saturn are small, varied chunks of ice and rock when you get down to the smaller scales. Reflecting on that this morning, I was thinking about how observing objects in our universe at smaller scales gives new insight into the variety and complexity of natural phenomena. Not long after, I came across a story of a new interesting object in our own Solar System. A new binary asteroid was discovered. This in itself isn’t too different...
In a major announcement this week, researchers with the Kepler Space Telescope science team have confirmed the existence of 1,284 new planets that had originally been found by Kepler. This is a huge leap in the number of confirmed planets, bringing the total to over 2,300. The previous science data collection done by Kepler was completed in 2013, so why is this new news? Well the exciting part is that these are confirmed planets. Usually when Kepler detects a signal indicating a potential planet, it needs to be verified by using some of the larger ground-based telescopes. Kepler is not immune...
Gamma rays are the highest energy photons on the electromagnetic spectrum. Their wavelength is similar to the size of an atom, and when two of them collide they tend to produce a matter-antimatter particle pair. They represent energy high enough to synthesize the fundamental particles of matter, and are produced in the highest energy environments in the cosmos. The interchange of matter and energy works both ways, so one of the ways gamma rays are generated is through annihilation of a matter-antimatter particle pair. Looking back to the beginning of the universe it gives us the earliest ‘chicken or egg’...
Black holes are the most extreme phenomena known in the universe. They are the absolute limit of what gravity and space-time can be twisted into. It’s no surprise that some of the most massive and advanced telescopes in the world are tasked with studying their properties and how they interact with their environment. But maybe there’s a way for you and I to see what a black hole can do, and all we need is a moderate 8 inch telescope and our eyes! Even though black holes generally give off tons of radiation, we need to observe them in the...
Nebula. Collapse. Protostar. Main Sequence. Red Giant. Planetary Nebula. White Dwarf. This is the cycle of life for a star like our Sun. By observing stars across the galaxy, we see snapshots of different points in a star’s life cycle. It’s the same with people; If you went for a walk in a city and observed people for a day, you would see every single stage of a person’s life: Infant, child, adolescent, youth, adult, middle aged, senior. How would you put them in order if you knew nothing about them? With people you might go up and ask them, but with stars we can...
News always reports the records. The biggest, the loudest, the fastest, the first. When it comes to Astronomy, there are so many new worlds to explore and so much new science to learn, we end up breaking records often. Even with Astronomy being the oldest science, the sheer amount of stuff in the universe means there is always something new and surprising to discover. Today’s episode of ‘Biggest, brightest, hottest’ brings us the move massive binary star system ever found, with two huge, hot stars so close together that they are actually touching, merging their atmospheres together. In the Large...
New science has come forward from a team of astronomers who, earlier this year, discovered a pair of black holes in a close orbit, heading toward a cataclysmic merger. The new results suggest that this incredibly powerful collision will occur much sooner than previously thought, as little as 100,000 years from now (A blip on the radar of astronomical timescales). By precisely calculating the individual and relative masses of the black holes, the team was able to predict how the merger would take place, giving a time line for the collision. The astronomers, from Columbia University, saw bright flashes of light...
I see so many amazing discoveries from educational institutions around the world, as they do cutting edge research in a variety of space-related fields. But I am truly excited when a discovery is made close to home, at a university here in Ontario, Canada. A PhD candidate from Queen’s University named Matt Schultz has discovered the first ever massive binary star in which both stars have magnetic fields, a star called epsilon Lupi. Why is this a big deal? Well if you’ve done a bit of astronomy in school, you’ll know that stars like the Sun have huge magnetic fields....
More than two-thirds of stars are not solitary like our Sun. They are binary systems, meaning they contain two stars that orbit each other about their common centre of gravity. Stars like our Sun are much more rare, and we are not sure what the difference in formation is between binary and solitary systems. Binary systems are much more useful from a scientific perspective, as we can study their orbital period and separation to infer a wide range of properties such as masses and distances. A special class of stars, called RR Lyrae variable stars, have puzzled astronomers for years...
If you’re in Astronomy circles you may have heard about a big cloud of Hydrogen heading toward the supermassive black hole in the centre of our galaxy, Sagittarius A*. The lead up to the cloud approaching the black hole had astronomers buzzing this year, as it would be a direct opportunity for us to see the black hole ‘devour’ the cloud. The black hole would show us some celestial fireworks and give us a huge opportunity to study their behaviour. Astronomers watched closely, and then the cloud passed right by…. We should have seen the cloud torn apart as matter spiralled...