The Problem With Baryons

Baryonic matter, which is everything we are made of and everything we can see in the universe, is not a lot of stuff.   I mean to a tiny Earthling, it’s a heck of a lot, but if you put it all together it only makes up about 5% of the total Mass-Energy in the Universe.  If you’ve ever seen the Millennium simulation, it highlights the fact that both baryonic and dark matter are organized into filaments of mass, with the baryonic matter at the densest points, ie the galaxies. What lies between these dense nodes and filaments are vast empty...

Simulated Light: Merging Black Holes

The merger of black holes proven by LIGO yesterday looks amazing in this simulated view in today’s APOD.  What would normally take a third of a second has been stretched out to show the entanglement.  And remember, these things are far more massive than the Sun, so to be moving this quickly and merging is an extremely high-energy interaction. And kablammo, matter converted to energy, gravitational waves aplenty, and an even bigger black hole.   Happy Long Weekend!

Black Hole Merger Confirmed!

A long time ago, in a galaxy far far away…. Two black holes, with masses 29 and 35 times the mass of the Sun, merged to form an even bigger black hole.  The merger resulted in three entire suns worth of matter converted to pure energy in the form of gravitational waves. The waves travelled a billion light years before a tiny meat-filled species on a pale blue dot in space figured how to see them.  Thanks to the smartest one that species had seen in a century, they knew that black holes might merge, and that they would produce these waves if...

Gamma Rays Point to Pulsars, Not Dark Matter

Gamma rays are the most powerful form of electromagnetic radiation in the universe.  With wavelengths as small at atoms, they usually result from the most powerful interactions known, such as the collision of two particles, or the release of energy from the accretion disk of a black hole.  But there is another potential source of gamma rays that has not yet been confirmed: Dark Matter. The leading candidate for dark matter is the theorized Weakly Interacting Massive Particle (WIMP), though it is not as wimpy as its namesake suggests, making up 5 times as much mass as the visible matter...

Where did the Elements Come From?

The elements that make up our world and our selves, where do they come from? Sure there is plenty of Oxygen in the air, Silicon and Carbon are just lying around, and a bunch of other stuff can be found across our planet.  but where did they come from originally? We know that most of the elements are synthesized within stars, but which ones aren’t? Which ones are made in a lab? The Big Bang gave rise to the first elements Hydrogen and Helium, which eventually clumped together to form the first stars and star producing the heavier stuff.  Lithium,...

The Gravity Wave ‘Discovery’

You may have heard about the leaked rumour about the discovery of gravitational waves from earlier this week.  It was from Lawrence Krauss, who is an amazing science communicator and author, as well as a darn good astrophysicist. My earlier rumor about LIGO has been confirmed by independent sources. Stay tuned! Gravitational waves may have been discovered!! Exciting. — Lawrence M. Krauss (@LKrauss1) January 11, 2016 It’s safe to say that as a guy with an inside scoop on a lot of the latest science news, this is something to get excited about.  The ‘LIGO’ he is referring to stands...

First Light For Black Hole Observatory

A newly installed instrument on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) has just taken it’s first images, what we call ‘first light’ in the astronomy world.  The instrument, called GRAVITY, uses four different 8m telescopes to perform what we call ‘Baseline Interferometry.’  It is expected that tis is the instrument that will allow humanity to take the first ever direct picture of a black hole. Interferometry is a technique that uses multiple small telescopes all collecting light at a specific wavelength.  These telescopes form a line that we call the baseline.  The combination of these telescopes and...

How You Can See A Black Hole!

Black holes are the most extreme phenomena known in the universe.  They are the absolute limit of what gravity and space-time can be twisted into.  It’s no surprise that some of the most massive and advanced telescopes in the world are tasked with studying their properties and how they interact with their environment.  But maybe there’s a way for you and I to see what a black hole can do, and all we need is a moderate 8 inch telescope and our eyes! Even though black holes generally give off tons of radiation, we need to observe them in the...

X-Ray Vision

If you actually had the ability to see X-Rays, the world around you would look pretty boring.  Actually it would be invisible, since nothing around you gives off X-rays.  You might be able to see an imaging device if you live or work near a medical office, but that’s about it.  If you looked at the night sky, you would see many interesting sources of X-Ray light, mostly from active black holes in our own galaxy and beyond.  Recently a high-resolution scan of the Andromeda Galaxy revealed a plethora of sources, showing where black holes and neutron stars are feeding...

Major Result in Stellar Evolution

Nebula. Collapse. Protostar. Main Sequence. Red Giant. Planetary Nebula. White Dwarf.  This is the cycle of life for a star like our Sun.  By observing stars across the galaxy, we see snapshots of different points in a star’s life cycle.  It’s the same with people; If you went for a walk in a city and observed people for a day, you would see every single stage of a person’s life: Infant, child, adolescent, youth, adult, middle aged, senior.  How would you put them in order if you knew nothing about them? With people you might go up and ask them, but with stars we can...