The fact that we have found gravitational waves tells us that we have come a long way in terms of science and technology. We detected a perturbation in the fabric of space-time that was one one-thousandth the diameter of a proton. It’s insane to think about that level of precision. And yet we still can’t find Dark Matter, the stuff that is literally everywhere in the universe. Is it our problem? Or is dark matter just on a whole different level? By now, we know that dark matter isn’t some clump of stuff sitting out there in space. But that...
I’ve covered a few ‘hidden galaxy’ stories lately, from the ultra high resolution see-through of Andromeda, to dark dust in front of M81 and M82. Now, hundreds of new hidden galaxies have been revealed by a team of astronomers who are looking straight through the Milky Way for the first time ever, shedding light on the structure of new galaxy clusters and the enigmatic pull of the ‘great attractor.’ The Earth is not stationary in space. It orbits the Sun, which in turn orbits the Milky Way galaxy, which then moves through the Universe as part of a galaxy cluster. ...
We know that galaxies like our Milky Way are far more massive than we can see. The dark matter in the Milky Way makes up 90% of it’s total mass. Another way of saying this is the Mass to Light ratio, comparing the total mass inferred by the rotation speed of the galaxy to the total mass of stars in the galaxy. This ratio, M/L, for the Milky Way, is about 10. But for a galaxy cluster, the M/L ratio is more like 100. Galaxy clusters are not just dense collections of stars and massive galaxies, they are also immense...
In the early universe, there was a huge amount of swirling matter and light that didn’t really have much structure. Compared to today’s much more regular dotting of galaxy clusters and superclusters, the early universe was all over the place. But as will all things, there had to be a first. a first star, a first galaxy, and even a first galaxy cluster. The massive cluster of galaxies known as IDCS J1426.5+3508 is the most distant massive galaxy cluster ever discovered, and it has some interesting properties that point to how it formed and evolved so quickly. One such property is...
Predicting the death of a star is easy. If we know how massive it is, and what stage of life it’s in, we know that it should explode eventually, within a set timeframe of many hundreds of thousands, or even millions of years. But on human timescales, that is just not good enough. What if we could predict a supernova explosion within a few months? For something that lives for so long, this would be a triumph in our understanding of the universe. Over the past couple of years, this is exactly what happened. Here’s how. A supernova is one of the most...
Beyond the atmosphere, past the stars we see, farther than the Milky Way, and continuing past Andromeda, we reach the real cosmic ocean. So called because like an ocean on Earth, it is vast, homogeneous, and impossible to navigate by common sense alone. In the cosmic ocean, an impossibly huge amount of space separates island galaxies, whose strong gravity binds them across incredible distances, dictating their course, and forming the largest and most massive structures in the universe: galaxy clusters. Because these immense structures are so vast and so distant, it requires the work of several telescopes to map out...
Dark matter is everywhere. There is way more of it in the universe than the matter we are made of and interact with. Yet for the sheer amount of it, we have no way of determining what exactly it is. It’s as if we didn’t know what air was, and even though we could see it and breathe it, we couldn’t measure it. The most tantalizing part about dark matter is that we can see the gravitational effect it has, and so we can determine how much of it there has to be. Some places in the universe have more dark matter than...
The Milky Way is a decently big Galaxy. At 100,000 light years across, it is a full size barred spiral galaxy and distinctly different from what we would call ‘dwarf galaxies.’ But there are much larger galaxies in the universe. Most reside near the centre of a massive galaxy cluster and are the result of Billions of years of mergers and collisions. But some appear large because of their incredibly powerful release of energy. A new Galaxy discovered in the early universe by a team of astronomers from the National Centre for Radio Astrophysics is an incredible 4 million light years...
The deeper we peer through the cosmos, the more we are looking into the distant past. Light from other galaxies takes millions of years to reach us, and so when that light has finally arrived at Earth, it is millions of years old, a snapshot in time of the distant galaxy. The furthest we can see is so far back in the history of the universe, that galaxies haven’t even formed yet. As we look at the large-scale structure of the Universe, we see it filled with a cosmic web of galaxy clusters, containing tens of thousands of galaxies each....
We call it dark matter because it doesn’t give off light, right? Well there is a lot of matter than doesn’t radiate, but the difference is that whatever the stuff is that we call dark matter doesn’t interact with anything through the small-scale fundamental forces. The only way we have been able to detect it’s presence is through large-scale gravitational interaction. Dark matter is ‘dark’ because it doesn’t interact with anything in a way that lets us figure out what it’s made of. Well now that we’ve got that out of the way, we can look at the new...