A direct consequence of Einstein’s theory of general relativity, and an observational way to prove it, is gravitational lensing. It requires a powerful gravitational source to work, such as a galaxy or cluster of galaxies. It works in a similar way to a lens of glass, where rays of light are bent toward a single source, increasing the brightness. In this case, instead of glass, the bending of the rays is due to the curvature of space. Light rays coming from the source would otherwise miss Earth, but instead are bent toward us when there is a massive object in front of it. It’s...
Predicting the death of a star is easy. If we know how massive it is, and what stage of life it’s in, we know that it should explode eventually, within a set timeframe of many hundreds of thousands, or even millions of years. But on human timescales, that is just not good enough. What if we could predict a supernova explosion within a few months? For something that lives for so long, this would be a triumph in our understanding of the universe. Over the past couple of years, this is exactly what happened. Here’s how. A supernova is one of the most...
Even I was blown away when I saw this image a friend sent me. Gravitational lensing is a rare occurrence, and a supernova is a rare occurrence, so to see a supernova in a gravitationally lensed galaxy deep within the universe is exceptional. So exceptional that it was spotted for the first time ever in a Hubble image of the distant universe. That dot in the image is a single supernova in a very distant galaxy, split into four images by the gravitational lensing of the galaxy cluster in front of it. But there is also a secondary lensing effect from...
Image submitted to an image processing competition called ‘Hubble’s Hidden Treasures’ are expected to be amazing, but this is the only one I’ve seen that will make you happier. This cosmic ‘smile’ is in the constellation Ursa Major, and is made up of the light from four galaxies, each with Billions of their own stars. This is the biggest happy face ever found! The two eyes are very distant galaxies known as SDSSCGB 8842.3 and SDSSCGB 8842.4. So why do we see this ring structure? You might think that the Galaxy is stretched by gravity, but its something much more...