Europa Chemistry

I always get giddy when talking about Europa, as many astronomers do.  It’s one of the most fascinating places in our solar system when it comes to the search for life.  It has lots of water, likely contained in a subsurface ocean.  It’s heated though a gravitational tug of war with Jupiter and the other Galilean moons.  And, as of recently, it has a chemical production system that matches Earth’s. I wonder what goes on beneath the thick ice of Europa.  Is there an ecosystem filled with alien life down there?  Life in Earth’s oceans feels very alien, but creatures from...

Edge-On: Good for Planets, Bad for Galaxies

Every time we see amazing photos of galaxies or planetary disks, we can see most of the detail since we see them face on.  But since the orientation of spiral galaxies in the universe is random, there are a plethora of galaxies ignored by image processors since we just can’t see much of the detail.  We can still learn from edge-on spiral galaxies, just not as much as we can from those that are face on. We can see some fascinating dust lanes in the image above, and a ton of detail considering the view, but we don’t know what...

1000 Things You Didn’t Know About the Universe #3: It’s Mostly Made of Nothing

Welcome to a new series of posts that will characterize 1000 amazing facts about the Universe.  There is so much out there that we have yet to learn, and every day, astronomers across the globe are using their research to reveal the deepest secrets of the cosmos.  This series will look at the strangest, coolest, most exciting facts that we have discovered in hundreds of years of modern science. Fact #3: The Universe is made of a ridiculous amount of nothing. What is everything made of? The answer will change depending on how much education you have.  For most of...

A Theory of Everything? Mixing Quantum Mechanics and Relativity

The biggest problem in theoretical physics today is the marriage between Quantum Mechanics and Gravity.  Throw in the fact that whatever theory comes out of it has to additionally be able to explain Dark Matter and Dark Energy, and we have ourselves a massive problem to solve.  How do we reconcile the seemingly random probabilistic nature of quantum mechanics with the smooth, pliable space-time of General Relativity.  We have two incredible theories that explain the Universe, make predictions accurately, and have led to amazing advances in technology and understanding, yet they completely disagree with each other at common scales. So...