Sadly no, this time we are NOT talking about Pluto. Astronomer Mike Brown from Caltech, heralded as the ‘man who killed planet Pluto’ has done some new work that might replace Pluto with a better fit for a true ninth planet, one that is ten times the mass of Earth. Now the only problem is finding it. But wait, if we haven’t seen it, how do we know it’s there? Well it certainly showcases the power of science, that an understanding of the true laws of nature can give us incredible predictive power. It started out as a ‘that’s strange’...
When you think of a nebula forming stars, it’s hard to imagine how large it is. Most nebulae form hundreds or even thousands of stars before being blown away by the young stellar winds. Pockets of a nebula collapse into dense regions that will eventually become stars with surrounding planetary systems. There are places in the galaxy we can look and actually see it happening. Pictured above, the beautiful ‘running chicken’ nebula, as strangely named as it is, is in the later stages of it’s star forming life. Many bright young stars have formed and their intense radiation is now...
Cryovolcano is a cool word, literally and figuratively. You hear about it a lot when talking about solar system moons like Enceladus, and it’s one of those words that would make a heck of a great Hollywood disaster movie title, like ‘Sharknado’ or ‘Armageddon.’ I do not, however, endorse either of those movies, they were both terrible. At any rate, a real cryovolcano seems like an interesting thing. It’s a volcano in the sense that it looks a little like a mountain and spews out material when the pressure builds from beneath the surface, but it’s not your traditional Earth-like volcano...
You may have heard about the leaked rumour about the discovery of gravitational waves from earlier this week. It was from Lawrence Krauss, who is an amazing science communicator and author, as well as a darn good astrophysicist. My earlier rumor about LIGO has been confirmed by independent sources. Stay tuned! Gravitational waves may have been discovered!! Exciting. — Lawrence M. Krauss (@LKrauss1) January 11, 2016 It’s safe to say that as a guy with an inside scoop on a lot of the latest science news, this is something to get excited about. The ‘LIGO’ he is referring to stands...
A newly installed instrument on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) has just taken it’s first images, what we call ‘first light’ in the astronomy world. The instrument, called GRAVITY, uses four different 8m telescopes to perform what we call ‘Baseline Interferometry.’ It is expected that tis is the instrument that will allow humanity to take the first ever direct picture of a black hole. Interferometry is a technique that uses multiple small telescopes all collecting light at a specific wavelength. These telescopes form a line that we call the baseline. The combination of these telescopes and...
When Isaac Newton quantified gravity, his theory explained how everything in the world around us behaved in its presence. It opened a door to an understanding of something fundamental, yet elusive in explanation. Centuries later, Einstein came along and took a step back, finding a larger more comprehensive theory of gravity, one that explained the strange things that happen in the grand universe. His theory could even explain things that Newton’s theory of gravity could not, such as the odd orbit of Mercury around the Sun. But the greatest part of Einstein’s theory is that if you use it to...
This story popped up yesterday, and I can imagine it will go far, since it talks about life in the universe. I get it, it’s what people are interested in, and at least this story is focused on the science of why this is the best place to look for intelligent civilizations, instead of “Oh hey there’s a strange ring of material around a star, must be an alien superstructure.” But I digress. So where is the best place to look for life in the universe? The answer is in a Globular Cluster. A globular cluster is one of the...
Predicting the death of a star is easy. If we know how massive it is, and what stage of life it’s in, we know that it should explode eventually, within a set timeframe of many hundreds of thousands, or even millions of years. But on human timescales, that is just not good enough. What if we could predict a supernova explosion within a few months? For something that lives for so long, this would be a triumph in our understanding of the universe. Over the past couple of years, this is exactly what happened. Here’s how. A supernova is one of the most...
Beyond the atmosphere, past the stars we see, farther than the Milky Way, and continuing past Andromeda, we reach the real cosmic ocean. So called because like an ocean on Earth, it is vast, homogeneous, and impossible to navigate by common sense alone. In the cosmic ocean, an impossibly huge amount of space separates island galaxies, whose strong gravity binds them across incredible distances, dictating their course, and forming the largest and most massive structures in the universe: galaxy clusters. Because these immense structures are so vast and so distant, it requires the work of several telescopes to map out...
We are reaching the point in our study of exoplanets, planets orbiting other stars, where the atmospheres of distant worlds are within the limits of our technology. Once we could barely see the wobble of a star, the telltale sign of an exoplanet, and now we can see reflected starlight and study a distant atmosphere. Now we can probe deeper questions, are atmospheres of exoplanets similar to solar system planets? What are they made of? Do other solar systems have the same raw materials as ours? Do they have what we believe to be the raw materials for life? A...