Until the recent discovery of gravitational waves, the only ‘sense’ that astronomers had was vision. Granted our ‘vision’ with telescopes is far broader than human eyes, we still need to find ingenious ways to use the precious photons that rain down on Earth. One of the new ways astronomers are using light is to look at what we call a ‘light echo.’ In reality it’s a reflection of starlight. When a new star is forming, it is accompanied by a protoplanetary disk, which will eventually form all the planets of the system. Our own solar system went through this stage 4.5...
Gas giants, like Jupiter, Saturn, or some of the largest exoplanets, are mostly made of Hydrogen gas. The simplest and most abundant element in the universe, Hydrogen easily reacts to form compounds, especially at higher temperatures, making it hard to contain and work with. It’s essential to understand how it behaves across a range of temperatures and pressures so that we can understand the interiors of stars and planets. But there may also be applications closer to home, like the white whale of materials science, a room temperature superconductor. A team of researchers from Osaka University and Tokyo Institute of...
We are reaching the point in our study of exoplanets, planets orbiting other stars, where the atmospheres of distant worlds are within the limits of our technology. Once we could barely see the wobble of a star, the telltale sign of an exoplanet, and now we can see reflected starlight and study a distant atmosphere. Now we can probe deeper questions, are atmospheres of exoplanets similar to solar system planets? What are they made of? Do other solar systems have the same raw materials as ours? Do they have what we believe to be the raw materials for life? A...
Our species is just now reaching the technology necessary to detect features of exoplanets, and not just the exoplanets themselves. We have seen atmospheres, aurorae, and magnetism on distant worlds, and now we can add incredibly fast winds to that list. A team of astronomers have discovered an exoplanet, classified as HD 189733b, that has wind speeds exceeding 8,500 km / h, or about 2 Km / s. Lead researcher Tom Louden, of the University of Warwick’s Astrophysics group, said: “This is the first ever weather map from outside of our solar system. Whilst we have previously known of Wind on...
If there’s one true fact about every single gas giant planet ever observed, around the Sun or other stars in the Galaxy, it’s that they all are mainly composed of Hydrogen. Even though the giants of our solar system such as Neptune and Jupiter seem very different, it is Hydrogen that primarily composes them. The difference is in the details though. The blue colour of Neptune is due to the presence of Methane, and even then it only makes up 1.7% of Neptune’s mass. But Hydrogen is light. Wouldn’t giant planets like hot Jupiters lose their Hydrogen from being blasted...
The vast majority of the articles you see in the world of science are written by a professional science writer about a postdoctoral fellow and a tenured professor who made a major discovery in a collaboration with another tenured professor from across an ocean working at a multi-million dollar supercomputer run by a wealthy world-renowned institution. And yet there is a huge amount of talk in the education world about how we have to find ways to teach and inspire our kids to participate in the process of discovery and integrate STEM (Science, Technology, Engineering, and Math). If we want to...
It’s difficult to determine the history of the Solar System. The planets have been in their current orbits for Billions of years, and any signs of prior activity or configuration has to come from leftover geologies of smaller, rocky worlds. It makes it especially difficult when the Billions of interloper asteroids and comets throughout history have to be accounted for, adding to the already complex task. But if there is one thing humanity has going for us it’s the ability to theorize, model, simulate, and test scenarios here on Earth. We can try new ideas and see if they match...
Twenty Years of exoplanet research has seen incredible advances in detecting planets orbiting distant stars, as well as their size, orbit period, orbit distance, and even atmospheric composition. But the next step in understanding exoplanets is to learn about their magnetic fields. We know that many exoplanets should have magnetic fields. It makes sense, since nearly every world in our own solar system has some sort of magnetism. But for the first time, an international team of Astronomers, led by Kristina Kislyakova of the Space Research Institute of the Austrian Academy of Sciences, have discovered a way to detect magnetic fields...