Cosmic rays are incredibly powerful invisible particles, and we can’t be sure where they come from. Not much in the way of a comforting thought, but it makes for a cosmic mystery that astronomers have been trying to solve for decades. And now they have come one step closer. Here’s what we do know. Cosmic rays are energetic atomic nuclei travelling at near the speed of light. They hit our atmosphere and rapidly interact with the molecules there to break into billions of smaller, less energetic particles that shower down on the life on Earth, without giving us much notice...
A long time ago, in a galaxy far far away…. Two black holes, with masses 29 and 35 times the mass of the Sun, merged to form an even bigger black hole. The merger resulted in three entire suns worth of matter converted to pure energy in the form of gravitational waves. The waves travelled a billion light years before a tiny meat-filled species on a pale blue dot in space figured how to see them. Thanks to the smartest one that species had seen in a century, they knew that black holes might merge, and that they would produce these waves if...
And the 2015 Nobel Prize in Physics goes to….. Arthur B. McDonald and Takaaki Kajita for the discovery of neutrino oscillations, which show that neutrinos have mass. It fills me with pride to see that a Canadian scientist can win the most distinguished award for Physics in the world, and proves that cutting edge research is done by Canadian Universities. We are an important part of the global machine that is advancing humanity’s understanding of science. So what did this East-West collaboration discover? A long Standing Problem in particle Physics, called the ‘solar neutrino problem,’ developed back in the 1960s....