This post is a collaboration with my good friend Bob Wegner, a professional musician, amateur astronomer, and genuinely good person. With the New Horizons spacecraft passing Ultima Thule on New Year’s eve 2019, Bob and I noticed that Queen guitarist and astronomer Brian May was on hand for the live event, playing a newly-written song to mark the event. Bob and I often talk about astronomy, as I’m always interested in his perspective as an enthusiast, while he’s equally interested in my opinion as a professional. We decided to take this event and write about it from two perspectives. For...
I saw an article last night about gravitational waves, that a black hole merger was detected by not just the Laser Interferometer Gravitational Wave Observatory (LIGO), but by another project altogether, the Virgo collaboration. This is the first gravitational wave detection confirmed by two separate groups, and it marks the beginning of a new era of experimental science, the first in astronomy in over two decades. Around 1.8 Billion years ago, to black holes merged in a faroff galaxy. They had masses of 31 and 25 times that of the Sun, though with their incredible density they would each be...
Here is a map of the nations of the world that use the two systems of measurement. Metric shown in blue and imperial shown in red. While it’s not always good to go with the crowd, there is a reason why more nations use the metric system. An often-cited passage from the book Wild Thing by Josh Bazell: “In metric, one milliliter of water occupies one cubic centimeter, weighs one gram, and requires one calorie of energy to heat up by one degree centigrade—which is 1 percent of the difference between its freezing point and its boiling point. An amount...
Modern rocketry is a pinnacle of engineering. It requires the right balance of multiple systems, and a deep knowledge of scientific principles such as fluid dynamics, aerodynamics, and chemistry. But a huge part of the brute force science done in rocketry has been ‘try and fail.’ Countless rockets have exploded in tests dating back to the cold war, and even though they are much less frequent today, there is still value in learning from explosive and expensive mistakes. Here is a compilation of rocket failures and testing from the last 70 years. ….because sometimes you have a day where you...
The fact that we have found gravitational waves tells us that we have come a long way in terms of science and technology. We detected a perturbation in the fabric of space-time that was one one-thousandth the diameter of a proton. It’s insane to think about that level of precision. And yet we still can’t find Dark Matter, the stuff that is literally everywhere in the universe. Is it our problem? Or is dark matter just on a whole different level? By now, we know that dark matter isn’t some clump of stuff sitting out there in space. But that...
With the recent discovery of gravitational waves, we now have a target for probing the very early universe, close to the big bang. This is because gravitational waves can travel across the universe unimpeded, meaning those created after the big bang are still bouncing around today. It’s like the big bang was the ringing of a giant bell, and the ringing can still be heard. But all of our Easter eggs are not in one basket. There is another way to probe the very early universe, one we haven’t found yet, because it involves particles that are very tiny and...
A long time ago, in a galaxy far far away…. Two black holes, with masses 29 and 35 times the mass of the Sun, merged to form an even bigger black hole. The merger resulted in three entire suns worth of matter converted to pure energy in the form of gravitational waves. The waves travelled a billion light years before a tiny meat-filled species on a pale blue dot in space figured how to see them. Thanks to the smartest one that species had seen in a century, they knew that black holes might merge, and that they would produce these waves if...
If you listen to an astronomer talk about a supernova, you’ll probably hear something along the lines of ‘A massive explosion of a massive star that is bright enough to outshine an entire galaxy.’ You can imagine how bright it might be, but it doesn’t really give you enough context to get the wow factor from it. Carl Sagan always said ‘When you make the finding yourself – even if you’re the last person on Earth to see the light – you’ll never forget it.’ Now you, dear reader, have the chance to make the discovery yourself. A series of images of galaxy...
You may have heard about the leaked rumour about the discovery of gravitational waves from earlier this week. It was from Lawrence Krauss, who is an amazing science communicator and author, as well as a darn good astrophysicist. My earlier rumor about LIGO has been confirmed by independent sources. Stay tuned! Gravitational waves may have been discovered!! Exciting. — Lawrence M. Krauss (@LKrauss1) January 11, 2016 It’s safe to say that as a guy with an inside scoop on a lot of the latest science news, this is something to get excited about. The ‘LIGO’ he is referring to stands...
The Crab Nebula, as it’s commonly known, is connected to one of the earliest recorded supernova explosions. In 1054 AD, Chinese Astronomers saw the explosion of this supernova as an incredibly bright star in the sky lasting about two weeks, before fading. Now, nearly 1000 years later, the explosion is still happening as an expanding shock front rich in heavy elements moves through the interstellar medium. When the shock front hits dust or gas it is slowed down, giving the resulting nebula a unique shape. In this case, it looks like a crab. The supernova wasn’t exactly the death of the original...