It wasn’t long after the discovery of exo-solar planets that scientists sent up spacecraft to look for them. The Kepler Space Telescope (KST) was NASA’s first planet finder, which has been exceeding expectations since 2009. It likely won’t get to continue on that road, as it is nearing the end of it’s life. At the same time, the Transiting Exoplanet Survey Satellite (TESS) is just starting to open it’s eyes. Today we say goodbye to one great planet hunter and hello to another. KST is part of NASA’s early 2000s spacecraft approvals that saw relatively inexpensive missions pushed forward...
The environment on the moon is pretty boring. Rocks, dust, and craters as far as the eye can see in all directions. Untouched for billions of years, save for meteors and a few recent visits by a blue neighbour. In 2009, the cold, dry surface of the moon was found to harbour trace amounts of water. Now, less than a decade later, the first map of lunar water has been produced. The map was produced with data taken by NASA’s Moon Mineralogy Mapper, which flew aboard India’s Chandrayaan-1 spacecraft, the craft that discovered the water in 2009, along with a similar...
Jupiter has aurora. It’s not surprising since it has a very powerful magnetic field. It’s only natural that the two largest structures in the solar system, the Sun’s solar wind influence (called the heliosphere) and Jupiter’s magnetosphere, should be constantly battling. But don’t expect to see Jupiter’s aurora through a backyard telescope. The result of this battle is far more energetic, producing an aurora invisible to the human eye, one made of X-rays. The Sun constantly blasts charged particles off into space in all directions, assaulting the planets, moons, and other solar system bodies. It is this blast of solar wind that gives...
In 2014, comet C/2013 A1, known as sliding spring, came within 140,000 Km of the planet Mars. This is a bit more than a third of the distance from the Earth to the Moon. Comets are small, so gravitationally this interaction was insignificant, but from an electromagnetic point of view, things were shaken up big time! Comets are small, relatively speaking. A typical comet is a few kilometers across, about the size of a big city. But with sunlight melting ices and liberating gases and dust from the comet’s interior, the part of the comet we see in the sky,...
Gamma rays are the highest energy photons on the electromagnetic spectrum. Their wavelength is similar to the size of an atom, and when two of them collide they tend to produce a matter-antimatter particle pair. They represent energy high enough to synthesize the fundamental particles of matter, and are produced in the highest energy environments in the cosmos. The interchange of matter and energy works both ways, so one of the ways gamma rays are generated is through annihilation of a matter-antimatter particle pair. Looking back to the beginning of the universe it gives us the earliest ‘chicken or egg’...
How do stars lose mass? For a star like the Sun, it shoots out a swath of charged particles into space and sheds mass at a rate of 4 million tons per second! Though even at this rate, the Sun only loses 1% of its total mass every 160 Billion years, so it’s not disappearing anytime soon. For more massive stars, the process can become complex and strange. The red hypergiant VY Canis Majoris, one of the largest known stars, is about 40 times as massive as the Sun, but humungous in scale. If this star were to replace the...
As someone who is a hobbyist astrophotographer, I’ve got a laundry list of astronomical events to photograph. Nebulas, Galaxies, star clusters, eclipses, and of course, aurorae! Where do the best aurorae happen? Near the north and south poles, so naturally it makes sense to visit those places where there is a bit of civilization, far north or south, with clear skies. The two places that are on my top list, outside of northern regions in my home country of Canada, are Iceland and Norway. Here are some reasons why: The aurora borealis are legendary in these parts of the world....
We know that Mars lost an ocean of water, but what was the exact mechanism? We also know that the magnetic field of Mars was lost a long time ago, and contributed to this major loss of water and atmosphere. In a press conference today, NASA officials working with data from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, have shown that major solar storms have increased the amount of atmosphere and water loss over time. “Mars appears to have had a thick atmosphere warm enough to support liquid water which is a key ingredient and medium for life as...
Categorizing objects in the universe can be difficult. The fiasco with Pluto over the last decade is more than proof of that. We generally look to location and then to size as the two main methods for classifying the stuff that permeates the cosmos. Galaxies contain stars, which host orbiting planets, which host orbiting moons; While asteroids fly in between planets and icy comets are wander through the outskirts of star systems. But what about the in-between objects? Often we find strange things in strange places. There are moons in our solar system that are larger than planets. What would...
Auroras on Earth are caused by the ionization of atoms high in the atmosphere near the north and south magnetic poles. The solar wind flies toward the Earth and this harmful radiation is blocked and funnelled by our magnetic field, creating harmless, beautiful glows that remind us how close we came to total destruction, but were saved by our planet. Do other planets have auroras? Certainly! Jupiter and Saturn do, and even moons like Ganymede can have auroral activity. It really depends on the magnetic field. So how does a planet like Mars, with no magnetic field, have auroras? This...