Gold doesn’t come from your local jewelry store, and the Gold rush that occurred in the Yukon territory at the turn of the 20th century is not the source I’m talking about either. I want to take it further back, to the origins of gold the element. Similar to the origins of most other elements on the periodic table, it requires an immense amount of energy, such as the nuclear fusion that goes on within a star. But Gold can not be made by a star’s thermonuclear engine. Gold requires more energy, as does every other element heavier than Iron. So...
I just released a post about the Kepler Space Telescope and its observation of the shock breakout of an exploding star, the exact moment when it’s considered a supernova. Further to this I wanted to show some of the great visualizations of the event, and to show you just how energetic and luminous a supernova really is, compared to our Sun. The video shows the shock breakout, the bright flash lasting an hour, before the star rapidly increases in brightness to it’s maximum. Not shown is the gradual fading of the supernova, which can take days or even weeks....
The most violent single event in the universe is the death of a massive star, a supernova. We have seen several different types, though the common element is a massive explosion, taking a star hiding amongst the background into an eruption that outshines it’s entire host galaxy. We have seen the brightness grow and fade over the duration of a supernova event, but we have never seen one just as it’s starting. Until now. Would you ever have thought that the Kepler space telescope, a planet hunter that continuously observes stars, could see supernovae? The key is in the words ‘continuously observed.’ By keeping...
The gravitational center of most objects and clusters in the universe are the place where the most massive and high energy interactions take place. For the solar system, the Sun’s core is hot and energetic. For star clusters, central regions host the most massive and brightest stars. For galaxy clusters, the most massive galaxies in the universe are seen in the center. And for individual galaxies, the Milky Way included, the core is where the fun happens. In the core of our galaxy, there are many massive and powerful objects, not limited to a supermassive star cluster, pulsars, supernova remnants,...
Looking at the universe in radio waves is a fascinating sight. For one, the radio sky is very weak; If you placed your cellphone on the Moon facing back at Earth, it would be brighter than all other radio sources in the entire sky by a factor of a million. But as with every other part of the electromagnetic spectrum, it has scientific value in studying the sky. Over the past decade, astronomers have been identifying several Fast Radio Bursts (FRB), short bursts of radio waves from different places in the universe that last for a few short seconds. These are...
On the outskirts of the Milky Way galaxy, its two major satellites can be seen, the large and small clouds of Magellan. Both considered irregular galaxies, they are more like swarms of stars, similar to gnats here on Earth. But even though they lack structure, they are still alive. The large magellanic cloud contains the single largest active star forming region in the entire local group of galaxies. This is the Tarantula Nebula. In the core of the tarantula, huge supernova shockwaves blast gas and dust, triggering star formation while forming dense filaments away from the center. Along the entire...
Today, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) is expected to announce a monumental discovery that is 100 years in the making. Theorized by Einstein’s general relativity in 1915, gravitational waves are ripples in space-time, similar to sound waves, but much tinier. The search has been ongoing for decades, with no results. Until now. LIGO has the most sensitive gravitational wave detector ever conceived – in two interferometer facilities in Livingston, Louisiana and Hanford, Washington. They use a laser split along two axes to give an in-phase beam. If gravitational waves along one of the axes affect the beam, it...
If you listen to an astronomer talk about a supernova, you’ll probably hear something along the lines of ‘A massive explosion of a massive star that is bright enough to outshine an entire galaxy.’ You can imagine how bright it might be, but it doesn’t really give you enough context to get the wow factor from it. Carl Sagan always said ‘When you make the finding yourself – even if you’re the last person on Earth to see the light – you’ll never forget it.’ Now you, dear reader, have the chance to make the discovery yourself. A series of images of galaxy...
Big stars tend to stick together. They all require incredibly dense regions in which to form, but once they do, they do a great job of blowing away and ionizing any other gas and dust in the vicinity. This is why nebulas in distant galaxies are great tracers of massive star formation. The bigger and hotter the star, the more UV light it produces, the more it ionized a gas cloud, the more we see gorgeous nebula. So it’s no surprise that when I look at the nebula below, I can guess that the central stars are huge, outweighing our...
The elements that make up our world and our selves, where do they come from? Sure there is plenty of Oxygen in the air, Silicon and Carbon are just lying around, and a bunch of other stuff can be found across our planet. but where did they come from originally? We know that most of the elements are synthesized within stars, but which ones aren’t? Which ones are made in a lab? The Big Bang gave rise to the first elements Hydrogen and Helium, which eventually clumped together to form the first stars and star producing the heavier stuff. Lithium,...