A Ring of Fire

A direct consequence of Einstein’s theory of general relativity, and an observational way to prove it, is gravitational lensing.  It requires a powerful gravitational source to work, such as a galaxy or cluster of galaxies.  It works in a similar way to a lens of glass, where rays of light are bent toward a single source, increasing the brightness.  In this case, instead of glass, the bending of the rays is due to the curvature of space. Light rays coming from the source would otherwise miss Earth, but instead are bent toward us when there is a massive object in front of it.  It’s...

The Largest Neutron Star in Existence

Neutron stars are the most extreme objects in the universe that have been proven to exist.  Black holes are very likely, but we’re still not 100% sure about them.  A black hole is like a giant squid in the ocean.  We’re pretty sure they exist, but nobody has caught one.  The neutron star on the other hand is like a blue whale, everybody knows they exist, and they are massive, rare, and beautiful.  Of course, once we know something exists, the next logical step is to figure out how it behaves, to characterize and generalize it, and to identify where it’s...

Building the Supermassive

Black holes form when a massive star runs out of fuel.  Gravity causes the core to collapse down to an object so dense that light itself can not escape.  In the Milky Way galaxy, there are expected to be over 100 Million black holes, though of course we can’t see them.  The one we can see is the supermassive black hole Sag A*, lying deep within the core of the galaxy.  But how did Sag A* form? Was it from the merger of many smaller black holes?  Or is there some other process forming the most enigmatic objects in the...

The Essence of Science and the Fringes of Reality

Data is fascinating.  And what’s even more fascinating is that the laws of nature produce predictable patterns in data.  For example, if you toss a coin 100 times and measure how many times heads comes up, you’ll get a number between zero and 100.  If you repeat that experiment again and again and again, you’ll get different values each time, but usually the number will be around 50, and 50 will come up more than any other value if you repeat the experiment enough times.  If you plot this data, with the # of heads in 100 coin tosses on...

The Intense Invisible Aurora

Jupiter has aurora.  It’s not surprising since it has a very powerful magnetic field.  It’s only natural that the two largest structures in the solar system, the Sun’s solar wind influence (called the heliosphere)  and Jupiter’s magnetosphere, should be constantly battling. But don’t expect to see Jupiter’s aurora through a backyard telescope.  The result of this battle is far more energetic, producing an aurora invisible to the human eye, one made of X-rays. The Sun constantly blasts charged particles off into space in all directions, assaulting the planets, moons, and other solar system bodies.  It is this blast of solar wind that gives...

The Flash of a Star’s Death

The most violent single event in the universe is the death of a massive star, a supernova.  We have seen several different types, though the common element is a massive explosion, taking a star hiding amongst the background into an eruption that outshines it’s entire host galaxy.  We have seen the brightness grow and fade over the duration of a supernova event, but we have never seen one just as it’s starting.  Until now. Would you ever have thought that the Kepler space telescope, a planet hunter that continuously observes stars, could see supernovae?  The key is in the words ‘continuously observed.’  By keeping...

Nature Outshines CERN

The gravitational center of most objects and clusters in the universe are the place where the most massive and high energy interactions take place.  For the solar system, the Sun’s core is hot and energetic.  For star clusters, central regions host the most massive and brightest stars.  For galaxy clusters, the most massive galaxies in the universe are seen in the center.  And for individual galaxies, the Milky Way included, the core is where the fun happens. In the core of our galaxy, there are many massive and powerful objects, not limited to a supermassive star cluster, pulsars, supernova remnants,...

A Dark Universe Full of Photons

Space seems dark to our weak human eyes.  Most of the night sky is the blackness between stars.  But in this darkness lies an endless number of photons, travelling in all different directions.  These photos form background radiation, in three wavelengths in particular.  You’ve likely heard of the Cosmic Microwave Background (CMB), it there is also a Cosmic Optical Background (COB) and a Cosmic Infrared Background (CIB). The COB is explained by the immense number of stars in the Universe.  It’s a diffuse glow across the entire sky.  The CMB is the leftover radiation from hot plasma that existed when the Universe...

Universe Radio on Repeat

Looking at the universe in radio waves is a fascinating sight.  For one, the radio sky is very weak; If you placed your cellphone on the Moon facing back at Earth, it would be brighter than all other radio sources in the entire sky by a factor of a million.  But as with every other part of the electromagnetic spectrum, it has scientific value in studying the sky.  Over the past decade, astronomers have been identifying several Fast Radio Bursts (FRB), short bursts of radio waves from different places in the universe that last for a few short seconds.  These are...